Epitranscriptomic Regulation via m⁶A: The Roles of METTL3 and YTHDF1 in Cervical Cancer Progression and Prognosis
Keywords:
METTL3, YTHDF1, m⁶A, Epitranscriptomics, Cervical CancerAbstract
Background: Cervical cancer is a leading cause of female morbidity and mortality globally, with the greatest burden in low- and middle-income countries. The limitations of conventional biomarkers in reflecting tumor molecular dynamics drive the search for more precise prognostic biomarkers. Epitranscriptomic modification of N6-methyladenosine (m⁶A) is a promising molecular approach in uncovering post-transcriptional regulation of RNAs that play an important role in cancer progression.
Objective: This article aims to explore the role of METTL3 and YTHDF1, two key components in the m⁶A system as prognostic and predictive biomarkers in cervical cancer.
Methods: This review utilized a narrative and structured literature review approach. Literature was obtained from scientific databases such as PubMed, ScienceDirect, SpringerLink, and Google Scholar, with inclusion criteria including articles within the last 10 years relevant to METTL3, YTHDF1, m⁶A, and cervical cancer.
Results: METTL3 acts as a major m⁶A writer that enhances the stability and translation of oncogenic mRNAs, and activates proliferative and EMT pathways, thus enhancing tumor aggressiveness. Meanwhile, YTHDF1 as an m⁶A reader facilitates the translation of pro-tumor proteins and immunosuppressive factors that suppress antitumor immune responses. Co-expression of METTL3 and YTHDF1 showed significant correlation with tumor progression, therapy resistance, and decreased patient survival.
Conclusion: Epitranscriptomic regulation through m⁶A modification mediated by METTL3 and YTHDF1 plays an important role in cervical cancer progression with cancer cell proliferation and invasion. Elevated levels of METTL3 and YTHDF1 lead to poor prognosis in cervical cancer
References
1. Stelzle D, Tanaka LF, Lee KK, et al. Estimates of the global burden of cervical cancer associated with HIV. Lancet Glob Health 2021;9(2):e161–e169.
2. Allahqoli L, Dehdari T, Rahmani A, Fallahi A, Gharacheh M, Hajinasab N. Delayed cervical cancer diagnosis: a systematic review.
3. Gomes M, Provaggi E, Pembe AB, Olaitan A, Gentry-Maharaj A. Advancing Cervical Cancer Prevention Equity: Innovations in Self-Sampling and Digital Health Technologies Across Healthcare Settings. Diagnostics 2025, Vol 15, Page 1176 [homepage on the Internet] 2025 [cited 2025 May 25];15(9):1176. Available from: https://www.mdpi.com/2075-4418/15/9/1176/htm
4. Dheur A, Kakkos A, Danthine D, et al. Lymph node assessment in cervical cancer: current approaches. Front Oncol [homepage on the Internet] 2024 [cited 2025 Jun 5];14:1435532. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11586254/
5. Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician’s Guide to Epitranscriptomics: An Example of N1-Methyladenosine (m1A) RNA Modification and Cancer. Life [homepage on the Internet] 2024 [cited 2025 May 24];14(10):1230. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11508930/
6. Cai T, Atteh LL, Zhang X, et al. The N6-Methyladenosine Modification and Its Role in mRNA Metabolism and Gastrointestinal Tract Disease. Front Surg [homepage on the Internet] 2022 [cited 2025 May 19];9:819335. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8831730/
7. Harrahill NJ, Hadden MK. Small molecules that regulate the N6-methyladenosine RNA modification as potential anti-cancer agents. Eur J Med Chem [homepage on the Internet] 2024 [cited 2025 May 13];274:116526. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0223523424004069
8. Liu Z, Gao L, Cheng L, et al. The roles of N6-methyladenosine and its target regulatory noncoding RNAs in tumors: classification, mechanisms, and potential therapeutic implications. Experimental & Molecular Medicine 2023 55:3 [homepage on the Internet] 2023 [cited 2025 May 17];55(3):487–501. Available from: https://www.nature.com/articles/s12276-023-00944-y
9. Yang Y, Sun BF, Xiao W, et al. Dynamic m6A modification and its emerging regulatory role in mRNA splicing. Sci Bull (Beijing) [homepage on the Internet] 2015 [cited 2025 May 25];60(1):21–32. Available from: https://www.sciencedirect.com/science/article/abs/pii/S2095927316305321
10. Wang S, Lv W, Li T, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int [homepage on the Internet] 2022 [cited 2025 May 25];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35093087/
11. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy 2021 6:1 [homepage on the Internet] 2021 [cited 2025 May 26];6(1):1–16. Available from: https://www.nature.com/articles/s41392-020-00450-x
12. Li Z, Lao Y, Yan R, Li F, Guan X, Dong Z. N6-methyladenosine in inflammatory diseases: Important actors and regulatory targets. Gene [homepage on the Internet] 2025 [cited 2025 May 25];936:149125. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0378111924010060
13. Khan FA, Nsengimana B, Awan UA, Ji XY, Ji S, Dong J. Regulatory roles of N6-methyladenosine (m6A) methylation in RNA processing and non-communicable diseases. Cancer Gene Therapy 2024 31:10 [homepage on the Internet] 2024 [cited 2025 May 25];31(10):1439–1453. Available from: https://www.nature.com/articles/s41417-024-00789-1
14. Wang Y, Wang Y, Patel H, et al. Epigenetic modification of m6A regulator proteins in cancer. Mol Cancer [homepage on the Internet] 2023 [cited 2025 May 25];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37391814/
15. Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther [homepage on the Internet] 2021 [cited 2025 May 27];6(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33611339/
16. Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomedicine & Pharmacotherapy [homepage on the Internet] 2024 [cited 2025 May 27];179:117421. Available from: https://www.sciencedirect.com/science/article/pii/S0753332224013064
17. Li T, Hu PS, Zuo Z, et al. METTL3 facilitates tumor progression via an m6A-IGF2BP2-dependent mechanism in colorectal carcinoma. Mol Cancer [homepage on the Internet] 2019 [cited 2025 May 27];18(1):112. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6589893/
18. Sun Y, Gong W, Zhang S. METTL3 promotes colorectal cancer progression through activating JAK1/STAT3 signaling pathway. Cell Death & Disease 2023 14:11 [homepage on the Internet] 2023 [cited 2025 May 27];14(11):1–14. Available from: https://www.nature.com/articles/s41419-023-06287-w
19. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol [homepage on the Internet] 2020 [cited 2025 May 25];13(1):1–15. Available from: https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-00951-w
20. Liu S, Zhuo L, Wang J, et al. METTL3 plays multiple functions in biological processes. Am J Cancer Res [homepage on the Internet] 2020 [cited 2025 May 27];10(6):1631. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7339281/
21. Hou H, Zhao H, Yu X, et al. METTL3 promotes the proliferation and invasion of esophageal cancer cells partly through AKT signaling pathway. Pathol Res Pract [homepage on the Internet] 2020 [cited 2025 May 27];216(9). Available from: https://pubmed.ncbi.nlm.nih.gov/32825955/
22. Wang Q, Guo X, Li L, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis [homepage on the Internet] 2020 [cited 2025 May 23];11(10). Available from: https://pubmed.ncbi.nlm.nih.gov/33099572/
23. Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161(6):1388–1399.
24. Zong X, Xiao X, Shen B, et al. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Res [homepage on the Internet] 2021 [cited 2025 May 26];49(10):5537–5552. Available from: https://pubmed.ncbi.nlm.nih.gov/33999206/
25. Tian K, Cai D, Yang S, Zhao W, Mei X, Chen SY. YTH N6-methyladenosine RNA Binding Protein 1 Inhibits Smooth Muscle Cell Phenotypic Modulation and Neointimal Hyperplasia. Cells [homepage on the Internet] 2025 [cited 2025 Jun 5];14(3):160. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11817666/
26. Dong Y, Qian C, Yan P, Wan G. YTHDF1-regulated ALOX5 in retinal pigment epithelial cells under hypoxia enhances VEGF expression and promotes viability, migration, and angiogenesis of vascular endothelial cells. Sci Rep [homepage on the Internet] 2024 [cited 2025 May 26];14(1):23226. Available from: https://www.nature.com/articles/s41598-024-72388-x
27. Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. 2021 [cited 2025 May 27];Available from: https://doi.org/10.1016/j.omtn.2021.10.023.
28. Shi R, Ying S, Li Y, Zhu L, Wang X, Jin H. Linking the YTH domain to cancer: the importance of YTH family proteins in epigenetics. Cell Death Dis [homepage on the Internet] 2021 [cited 2025 May 27];12(4):346. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8016981/
29. Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. Mol Ther Nucleic Acids [homepage on the Internet] 2021 [cited 2025 May 27];26:1270–1279. Available from: https://www.sciencedirect.com/science/article/pii/S2162253121002663
30. Hu Y, Pan Q, Wang M, et al. m6A RNA Methylation Regulator YTHDF1 Correlated With Immune Microenvironment Predicts Clinical Outcomes and Therapeutic Efficacy in Breast Cancer. Front Med (Lausanne) [homepage on the Internet] 2021 [cited 2025 May 27];8:667543. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8380833/
31. Imam H, Kim GW, Siddiqui A. Epitranscriptomic(N6-methyladenosine) Modification of Viral RNA and Virus-Host Interactions. Front Cell Infect Microbiol [homepage on the Internet] 2020 [cited 2025 May 27];10:584283. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7732492/
32. Liu Y, Yang D, Liu T, Chen J, Yu J, Yi P. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends Mol Med [homepage on the Internet] 2023 [cited 2025 May 27];29(6):454–467. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1471491423000655
33. Wang S, Lv W, Li T, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int [homepage on the Internet] 2022 [cited 2025 Jun 5];22(1):1–12. Available from: https://cancerci.biomedcentral.com/articles/10.1186/s12935-022-02452-x
34. Shi T, Zhang H, Chen Y. The m6A revolution: transforming tumor immunity and enhancing immunotherapy outcomes. Cell Biosci [homepage on the Internet] 2025 [cited 2025 May 28];15(1):27. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC11846233/
35. Yang C, Hu Y, Zhou B, et al. The role of m6A modification in physiology and disease. Cell Death & Disease 2020 11:11 [homepage on the Internet] 2020 [cited 2025 May 28];11(11):1–16. Available from: https://www.nature.com/articles/s41419-020-03143-z
36. Wang S, Lv W, Li T, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int [homepage on the Internet] 2022 [cited 2025 May 28];22(1):1–12. Available from: https://cancerci.biomedcentral.com/articles/10.1186/s12935-022-02452-x
37. Huang Q, Mo J, Liao Z, Chen X, Zhang B. The RNA m6A writer WTAP in diseases: structure, roles, and mechanisms. Cell Death & Disease 2022 13:10 [homepage on the Internet] 2022 [cited 2025 Jun 5];13(10):1–13. Available from: https://www.nature.com/articles/s41419-022-05268-9
38. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol Oncol [homepage on the Internet] 2020 [cited 2025 May 28];13(1):1–15. Available from: https://jhoonline.biomedcentral.com/articles/10.1186/s13045-020-00951-w
39. Yang Z, Zhang S, Xiong J, et al. The m6A demethylases FTO and ALKBH5 aggravate the malignant progression of nasopharyngeal carcinoma by coregulating ARHGAP35. Cell Death Discov [homepage on the Internet] 2024 [cited 2025 May 27];10(1):1–15. Available from: https://www.nature.com/articles/s41420-024-01810-0
40. Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell & Bioscience 2024 14:1 [homepage on the Internet] 2024 [cited 2025 May 28];14(1):1–20. Available from: https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-024-01286-6
41. Liao J, Wei Y, Liang J, et al. Insight into the structure, physiological function, and role in cancer of m6A readers—YTH domain-containing proteins. Cell Death Discov [homepage on the Internet] 2022 [cited 2025 Jun 5];8(1):137. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8964710/
42. Hou J, Gao Y, Han B, Yan S, Wei S, Gao X. Nuclear accumulation of YTHDF1 regulates mRNA splicing in the DNA damage response. Science Advances [homepage on the Internet] 2025 [cited 2025 Jun 3];11(16). Available from: /doi/pdf/10.1126/sciadv.ado7660?download=true
43. Liang L, Zhu Y, Li J, Zeng J, Wu L. ALKBH5-mediated m6A modification of circCCDC134 facilitates cervical cancer metastasis by enhancing HIF1A transcription. Journal of Experimental and Clinical Cancer Research [homepage on the Internet] 2022 [cited 2025 Jun 4];41(1). Available from: https://pubmed.ncbi.nlm.nih.gov/36028854/
44. Lin X, Wang F, Chen J, et al. N 6-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res [homepage on the Internet] 2022 [cited 2025 Jun 5];9(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35418160/
45. Du H, Zou NY, Zuo HL, Zhang XY, Zhu SC. YTHDF3 mediates HNF1α regulation of cervical cancer radio-resistance by promoting RAD51D translation in an m6A-dependent manner. FEBS Journal [homepage on the Internet] 2023 [cited 2025 Jun 5];290(7):1920–1935. Available from: https://pubmed.ncbi.nlm.nih.gov/36380687/
46. Liu S, Zhuo L, Wang J, et al. METTL3 plays multiple functions in biological processes. Am J Cancer Res [homepage on the Internet] 2020 [cited 2025 Jun 5];10(6):1631. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7339281/
47. Guo Y, Bai Y, Wang L, et al. METTL3 facilitates the progression of cervical cancer by m6A modification-mediated up-regulation of NEK2. Sci Rep [homepage on the Internet] 2024 [cited 2025 Jun 5];14(1):24469. Available from: https://www.nature.com/articles/s41598-024-73601-7
48. Jin Q, Qu H, Quan C. New insights into the regulation of METTL3 and its role in tumors. Cell Commun Signal [homepage on the Internet] 2023 [cited 2025 Jun 5];21(1):334. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10732098/
49. Gao Z, Zha X, Li M, Xia X, Wang S. Insights into the m6A demethylases FTO and ALKBH5 : structural, biological function, and inhibitor development. Cell & Bioscience 2024 14:1 [homepage on the Internet] 2024 [cited 2025 Jun 5];14(1):1–20. Available from: https://cellandbioscience.biomedcentral.com/articles/10.1186/s13578-024-01286-6
50. Liu X-W, Xu H-W, Zhang S-B, Yi Y-Y, Chang S-J, Wang S-J. ELF1-mediated transactivation of METTL3/YTHDF2 promotes nucleus pulposus cell senescence via m6A-dependent destabilization of E2F3 mRNA in intervertebral disc degeneration. Cell Death Discovery 2025 11:1 [homepage on the Internet] 2025 [cited 2025 Jun 5];11(1):1–21. Available from: https://www.nature.com/articles/s41420-025-02515-8
51. Hua W, Zhao Y, Jin X, et al. METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol [homepage on the Internet] 2018 [cited 2025 Jun 5];151(2):356–365. Available from: https://pubmed.ncbi.nlm.nih.gov/30249526/
52. Esteva-Socias M, Aguilo F. METTL3 as a master regulator of translation in cancer: mechanisms and implications. NAR Cancer [homepage on the Internet] 2024 [cited 2025 Jun 5];6(1):zcae009. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10914372/
53. Guo Y, Bai Y, Wang L, et al. METTL3 facilitates the progression of cervical cancer by m6A modification-mediated up-regulation of NEK2. Sci Rep [homepage on the Internet] 2024 [cited 2025 Jun 5];14(1):24469. Available from: https://www.nature.com/articles/s41598-024-73601-7
54. Su C, Zhang Y, Chen P, Yang W, Du J, Zhang D. Methyltransferase-like 3 induces the development of cervical cancer by enhancing insulin-like growth factor 2 mRNA-binding proteins 3-mediated apoptotic chromatin condensation inducer 1 mRNA stability. Bioengineered [homepage on the Internet] 2022 [cited 2025 Jun 5];13(3):7034. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9208506/
55. Chen Y, Wan R, Zou Z, et al. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. Nature Cell Biology 2023 25:11 [homepage on the Internet] 2023 [cited 2025 Jun 5];25(11):1676–1690. Available from: https://www.nature.com/articles/s41556-023-01258-x
56. Shi Y, Liu B, Zhang Y, et al. YTHDF1/RNF7/p27 axis promotes prostate cancer progression. Cell Death & Disease 2025 16:1 [homepage on the Internet] 2025 [cited 2025 Jun 5];16(1):1–12. Available from: https://www.nature.com/articles/s41419-025-07648-3
57. Wang H, Luo Q, Kang J, et al. YTHDF1 Aggravates the Progression of Cervical Cancer Through m6A-Mediated Up-Regulation of RANBP2. Front Oncol [homepage on the Internet] 2021 [cited 2025 Jun 5];11:650383. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8017305/
58. Liu H, Zhang X, Ding F, et al. YTHDF1-targeting nanoassembly reverses tumoral immune evasion through epigenetics and cell cycle modulation. Journal of Controlled Release [homepage on the Internet] 2025 [cited 2025 Jun 5];381:113574. Available from: https://www.sciencedirect.com/science/article/abs/pii/S016836592500183X
59. Lin W, Chen L, Zhang H, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nature Communications 2023 14:1 [homepage on the Internet] 2023 [cited 2025 Jun 5];14(1):1–22. Available from: https://www.nature.com/articles/s41467-022-35710-7
60. Jang D, Hwa C, Kim S, et al. RNA N6-Methyladenosine-Binding Protein YTHDFs Redundantly Attenuate Cancer Immunity by Downregulating IFN-γ Signaling in Gastric Cancer. Advanced Science [homepage on the Internet] 2024 [cited 2025 Jun 5];12(3):2410806. Available from: /doi/pdf/10.1002/advs.202410806
61. Wang Q, Guo X, Li L, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis 2020;11(10).